
Intel x86 Assembly Language Programming

CMST 385 – Systems and Database Administration

Tim Bower, Kansas State Universtity – Polytechnic Campus

The Intel x86 line of CPUs use the accumulator machine model.

Registers

Note that each register has 32 bit, 16 bit and 8 bit names. We will usually use just the 32 bit names for
the registers. See the diagrams of the registers on the following pages.

• The primary accumulator register is called EAX. The return value from a function call is saved in
the EAX register. Secondary accumulator registers are: EBX, ECX, EDX.

• EBX is often used to hold the starting address of an array.

• ECX is often used as a counter or index register for an array or a loop.

• EDX is a general purpose register.

• The EBP register is the stack frame pointer. It is used to facilitate calling and returning from
functions.

• ESI and EDI are general purpose registers. If a variable is to have register storage class, it is
often stored in either ESI or EDI. A few instructions use ESI and EDI as pointers to source and
destination addresses when copying a block of data. Most compilers preserve the value of ESI and
EDI across function calls — not generally true of the accumulator registers.

• The ESP register is the stack pointer. It is a pointer to the “top” of the stack.

• The EFLAGS register is sometimes also called the status register. Several instructions either set or
check individual bits in this register. For example, the sign flag (bit 7) and the zero flag (bit 6) are
set by the compare (cmp) instruction and checked by all the conditional branching instructions.

• The EIP register holds the instruction pointer or program counter (pc), which points to the next
instruction in the text section of the currently running program.

Memory Segmentation and Protection

The earliest processors in the x86 family had 16 bit registers, thus memory addresses were limited to 16
bits (64 Kbytes). This amount of memory is not large enough for both the code and the data of many
programs. The solution was to segment the memory into 64 K blocks. The code goes into one segment,

1

CLCH

CX

ECX

(Count)

DLDH

DX

EDX

(Data)

SI

ESI

(Source Index)

DI

EDI

(Destination Index)

SP

ESP

(Stack Pointer)

BP

EBP

(Base Pointer)

BLBH

BX

EBX

(Base)

ALAH

AX

EAX

(Accumulator)

31 0

General Register Designations for x86 CPUs.

2

Carry Flag

Parity Flag

Auxiliary Flag

Zero Flag (zf)

Interrupt Enable

Trap Flag

Direction Flag

Overflow Flag

I/O Privilege Level

Nested Task Flag

Resume Flag

Virtual 8086 Mode

0

6
7

18

31

Note: If not listed means CPU reserved, do not define.

Sign Flag (sf)

EFLAGS Register.

Segment register

base address (4 MS bits)

����������
����������
����������
����������

address

offset (16 bits) +

Segment

Memory

Real Mode, Segmented Memory Model.

3

access limit

base address

access limit

base address

access limit

base address

access limit

base address

����������
����������
����������
����������

Segment

Memory
..
.

GDT

address

Segment register

offset (16 bits or 32 bits)

+

GDTR or
LDTR TI Index

Protected Mode, Segmented Memory Model.

the data into another, and the stack is placed into a third segment. Each segment is given its own address
space of up to 64 Kbytes in length. The 16–bit addresses used by the program are actually an offset from
a segment base address. This is called real mode, segmented memory model and instructions and data are
referenced relative to a base address held in the segment register (see diagram). The segment registers
are CS (code segment), SS (stack segment), DS, ES, FS, GS (all data segments). The segmented model
increases the addressable memory size to 220 = 1Mbyte. The segment and offset registers are combined
in an unusual manner. The two registers are offset by four bits and added together to come up with a
20-bit address. This is the memory model used by DOS.

The only advantage to this mode was that it was very easy for developers to write their own device
drivers. Once DOS loaded a program, it stayed out of the way and the program had full control of the
CPU. The program can either let the BIOS handle the interrupts or handle them itself. This worked
great for small programs which could fit into the available memory and did not require multi-tasking.

BIOS: Software in read–only–memory of the computer with basic device drivers and interrupt han-
dlers for I/O devices (keyboard, drives, monitor, printer, mouse). BIOS is used when the computer is
turned on to load the operating system. Modern operating systems (Unix, Linux, Windows) do not use
the BIOS drivers once the operating system is running (booted).

For more demanding applications, the limitations of the real mode scheme were prohibitive. So
beginning with the Intel 80286 processor, a protected mode was also available. In protected mode, these
processors provide the following features:

Protection: Each program can be allocated a certain section of memory. Other programs cannot use

4

this memory, so each program is protected from interference from other programs.

Extended memory: Enables a single program to access more than 640K of memory.

Virtual memory: Expands the address space to 16 MB for 16–bit processors and 4 GB for 32–bit
processors (80386 and later).

Multitasking: Enables the microprocessor to switch from one program to another so the computer can
execute several programs at once.

In the protected mode, segmented memory model, the code segment contains an offset into the global
descriptor table, where more details about the base address and memory protection / limits are stored. A
special register called the GDTR points to the location of the GDT and the segment registers hold offsets
pointing to the desired entry called a segment descriptor in the GDT (see diagram). The Minix OS uses
a protected mode, segmented memory model. Minix boots into this mode and stays in protected mode.
Very complicated articles can be found in literature and on the Internet describing how a DOS program
can switch the processor to protected mode and then return to real mode when the program exits.

Modern x86 based operating systems (Windows and Linux) use a protected mode, flat memory model
where the base memory addresses in the segment descriptors in the GDT are all set to the same value. This
mode greatly simplifies things, making segmentation and memory protection a non-issue for programmers.

Summary

4004 First Intel CPU - 4 bit.

8088 16 bit CPU with 8 bit external data bus. DOS ran in real mode with segments.

8086 16 bit CPU.

80186 Used mainly with embedded systems. Added some new instructions.

80286 Added protected mode. Some versions of Unix (SC0 Xenix, minix) used protected mode with
segments.

80386 32 bit CPU. Windows 3.0, Linux used protected mode flat memory model.

80486 Math co-processor now included on CPU.

Pentium Faster; later Pentiums have a RISC core processor.

IA-64 aka Itanium - 64 bit processor.

Addressing Modes

The addressing mode refers to how operands are referenced in an assembly language instruction. We
will use the mov instruction here to describe the available addressing modes of the x86 family of processors.
The mov instruction copies data between two locations. It’s syntax is shown below — dest and source
represent the operands. Data is copied from the source to the destination.

5

mov dest, source

Register Mode A register mode operand simply names a register. Both operands use register mode
below. Here we copy the contents of register ECX to register EAX. Note that register names are
not case sensitive in the assembly code.

mov EAX, ECX

Immediate Mode An immediate mode operand is a constant listed directly in the code. Below, we
use immediate mode with the second operand to store the value 10 in the EAX register. The
immediate mode operand must be the source operand.

mov EAX, 10

Register Indirect (On SPARC, this same mode is called Register direct.) Here we use a register to
hold a pointer (address in main memory) of where data can be moved to or from. Both operands
of an instruction can not be register indirect — one of the operands must be either register mode
or immediate mode. Brackets are placed around the operand to indicate register indirect. In C
language terminology, brackets may be viewed as the dereference operator. Some compilers use
square brackets, others use parentheses.

mov [EAX], EDX ; contents of edx goes to address pointed to by eax.

mov ebx, [edx] ; data at address pointed to by edx goes to ebx.

; the semicolon designates the beginning of a comment for some

assemblers.

! other assemblers use the exclamation mark for comments.

Base Displacement Constants or offsets of 8–, 16– or 32–bits may also be added to the contents of
a register to come up with an effective address. As shown below, there are several forms of base
displacement. The other operand combined with a base displacement operand must be either
register mode or immediate mode.

mov EBX, 16[EBP] ; data at 16+EBP goes to EBX

mov ebx, [ebp+16] ; same as above

mov ebx, [ebp]16 ; same as above

mov [EDI][EBP], 10 ; 10 goes to EDI+EBP

mov [EDI][EBP+16], 18 ; 18 goes to EDI+EBP+16

The default operation with the mov instruction is to move 32– bits (double word) of data. Some
compilers (MS Visual C++), specify the type of operation even if it is the default.

mov EAX, DWORD PTR [EBX]

There are actually several ways of specifying a smaller quantity of data to be copied. The following
are all examples of instructions which copy 16–bits (word) of data.

mov EAX, WORD PTR [EBX]

mov AX, [EBX]

o16 mov -6(ebp), 3

The keyword byte or the 8–bit designation of a register may be used to copy 8 bits of data.

6

Basic Instructions

In the descriptions of the instructions, the following symbols are used to indicate the accepted addressing
modes.

Operator Type Definition
reg register mode operand

immed immediate mode operand (a constant)
mem operand is a memory address, either register indirect or base displacement operand.

Listed here are only the most commonly used instructions. Information on additional instructions
can be found from the Intel manual (/pub/cis450/Pentium.pdf or /pub/cis450/x86Instructions.ps)

Data Movement Instructions

Instruction Operands Notes
mov reg, immed Copy data
movb reg, reg movb copies one byte

reg, mem destination, source
mem, immed destination is overwritten
mem, reg

movsx reg, immed
reg, reg Copy data with sign extend
reg, mem

movzx reg, immed
reg, reg Copy data with zero extend
reg, mem

push reg Copy data to the top of the stack (esp)
immed The stack pointer (ESP) is decremented by 4 bytes.

pop reg Copy data from the top of the stack to a register
The stack pointer (ESP) is incremented by 4 bytes.

lea reg, mem Load a pointer (memory address) in a register

Integer Arithmetic Instructions

The destination register for all of these instructions must be one of the accumulator registers (EAX,
EBX, ECX, EDX).

7

Instruction Operands Notes
add reg, reg two’s complement addition

reg, immed first operand is used as source and overwritten as destination
reg, mem

sub reg, reg two’s complement subtraction
reg, immed first operand is used as source and overwritten as destination
reg, mem

inc reg increment the value in register
dec reg decrement the value in register
neg reg additive inverse
mul EAX, reg Unsigned multiply

EAX, immed Some compilers tend to use imul instead
EAX, mem

imul reg Signed multiply, EAX*reg → EAX
reg, reg
reg, immed
reg, mem

div reg Unsigned divide
mem EAX / reg,mem; EAX = quotient, EDX = remainder,

idiv reg Signed divide
mem EAX / reg,mem; EAX = quotient, EDX = remainder,

Structure of an assembly language file

In addition to the assembly instructions, there are a few other declarations in an assembly language
program produced by a compiler.

Here we review the elements of an assembly language program. These notes are for the Minix assem-
bler. There may be some variance with other assemblers.

Segment declaration

There are four different assembly segments: text, rom, data and bss. Segments are declared and selected
by the sect pseudo-op. It is customary to declare all segments at the top of an assembly file like this:

.sect .text; .sect .rom; .sect .data; .sect .bss

Then within the body of the code, segment declarations are used to begin the declarations for each
segment. Note that the ’.’ symbol refers to the location in the current segment.

Labels

There are two types: name and numeric. Name labels consist of a name followed by a colon (:).
The numeric labels are single digits. The nearest 0: label may be referenced as 0f in the forward

direction, or 0b backwards.

8

Statement Syntax

Each line consists of a single statement. Blank or comment lines are allowed.
The most general form of an instruction is

label: opcode operand1, operand2 ! comment

Local Variables and the Stack

The stack is used to store local variables. They may be put on the stack with either the push instruction
or by first allocating space on the stack (subtract from esp) and then using the mov instruction to store
data in the allocated space. Here we will show an example of how local variables are used from the stack.

Recall that the stack is upside down from how stacks are normally viewed in that the “top” of the
stack has the lowest memory address of the stack data. The processor maintains a special register (ESP)
which is a pointer to the memory address of the ‘top’ of the stack. Another important register associated
with the stack is the frame pointer (EBP). The frame pointer is sort of a book-mark or reference point
in the stack. Nearly all memory references are relative to the frame pointer. Management of the frame
pointer is critical to how functions are called and more importantly, how the program returns to the
calling function. Function calls will be covered in more detail later.

C compilers implement a restriction that each function may only access (i.e. scope) those elements on
the stack which are within the function’s Activation Record. The Activation Record for each function
includes the following:

function parameters
return address
old frame pointer ←− frame pointer (ebp)
local variables ←− stack pointer (esp)

To set up the frame pointer at the beginning of each function (including main), the following two
lines of assembly code are used.

push ebp

mov ebp,esp

So first, the old frame pointer is pushed onto the stack for use when the function returns to the calling
(parent) function. Then, since the old frame pointer is now at the top of the stack, we can use the pointer
value in the esp register to copy a pointer to where the old frame pointer was stored to the ebp register,
making this the new frame pointer.

Here is a simple example of how local variables in the stack are managed. Try to draw a memory map
of the stack.

Function Calls and the Stack

The stack is also used to store data that is used for making calls to functions. Data is pushed onto the
stack when a function is called and is removed from the stack when the function returns.

9

#include <stdio.h>

int main(void)

{

char c = ’a’;

int i;

short j;

i = 10;

j = 5;

i += j;

}

.sect .text; .sect .rom; .sect .data; .sect .bss

.extern _main

.sect .text

_main:

push ebp

mov ebp,esp

sub esp,12

push esi

movb -1(ebp),97

mov esi,10

o16 mov -10(ebp),5

movsx eax,-10(ebp)

add esi,eax

pop esi

leave

ret

Recall that C compilers implement a restriction that each function may only access (i.e. scope) those
elements on the stack which are within the function’s Activation Record. The Activation Record for
each function includes the following:

function parameters
return address
old frame pointer ←− frame pointer (ebp)
local variables ←− stack pointer (esp)

The steps for a function are the same for every C function. It should be pointed out that this is the
scheme used by compilers. Some assembly programmers follow this scheme for hand written assembly
code. But many assembly programmers never worry about setting the frame pointer.

1. The calling function pushes the function parameters onto the stack prior to the function call.

2. The call instruction pushes the return address (EIP register) onto the stack which is used on function
exit by the ret (return) instruction which loads the EIP register with this address.

3. The function (assembly code) pushes the old frame pointer onto the stack and sets the EBP register
to point to this location on the stack.

push ebp

mov ebp,esp

4. During the execution of the function, the frame pointer is used as a reference point to the rest of
the memory in the activation record. On function exit, the leave instruction loads the EBP register
from this saved value so that when control returns to the calling function, the frame pointer is still
correct.

10

5. Local variables are stored on the stack and are removed from the stack when the function exits.

6. If the function returns data to the calling function, the return value is placed in the EAX register.

7. The calling function removes and discards the function parameters when control is returned from
the function.

8. The calling function looks to the EAX register for a return value.

int main(void)

{

...

f(a, b, c);

...

}

void f(int i, int j, int k)

{

int x, y, z;

...

}

k | c |

j | b |

i | a |

| ret addr |

| old fp | <--- fp (ebp)

| x |

| y |

| z | <--- sp (esp)

Some instructions related to function calls are:

call 1. push eip

2. Jump to the new location (set eip to the location of the instructions for the called function).

leave 1. mov esp,ebp — throw away local variables

2. pop ebp — set frame pointer back to old value

ret n 1. pop eip — set pc to return to calling function

2. pop n words and discard — n is almost always 0.

Here is a more extensive example, again try to draw a memory map. Check your memory map with
the memory map posted on the class web page for ar.c. This example includes examples of global and
static data which are saved in the bss and data section of memory.

11

#include <stdio.h>

int gbss;

int gdata = 5;

int f(int, int, int);

int main(void)

{

int lauto1, lauto2, lauto3;

static int lbss;

gbss = 10;

lbss = 20;

lauto1 = f(gdata, gbss, lbss);

lauto2 = 5;

lauto3 = 15;

printf("%d %d %d\n", lauto1, lauto2, lauto3);

printf("%d\n", f(lauto3, lauto2, 5));

return 0;

}

int f(int a, int b, int c)

{

static int d;

int e;

d += a + b + c;

e = d*a;

return e;

}

1 .sect .text; .sect .rom; .sect .data; .sect .bss

2 .extern _gdata

3 .sect .data

4 _gdata:

5 .extern _main

6 .data4 5 ! gdata = 5 in data section

7 .sect .text

8 _main:

9 push ebp ! save old frame pointer

10 mov ebp,esp ! new frame pointer goes to ebp

11 sub esp,4 ! lauto1 = -4(ebp)

12

12 push esi ! lauto3 = esi -- note: register without asking

13 push edi ! lauto2 = edi

14 .sect .bss

15 .comm I_1,4 ! 4 bytes in bss (I_1) for static int lbss

16 .sect .text

17 mov (_gbss),10 ! gbss = 10

18 mov edx,20

19 mov (I_1),edx ! lbss (I_1) = edx = 20

20 push edx

21 push (_gbss) ! push params in reverse order

22 push (_gdata)

23 call _f

24 add esp,12 ! remove params from stack

25 mov -4(ebp),eax ! lauto1 = f(...)

26 mov edi,5 ! lauto2 = 5

27 mov esi,15 ! lauto3 = 15

28 push esi

29 push edi ! push params in reverse order

30 push -4(ebp)

31 push I_2 ! format ... "%d %d %d\n"

32 call _printf

33 add esp,16 ! remove params

34 push 5

35 push edi

36 push esi

37 call _f

38 add esp,12 ! remove params

39 push eax ! push return value to stack

40 push I_3 ! format ... "%d\n"

41 call _printf

42 pop ecx

43 pop ecx ! remove params, alternate to ‘add esp,8’

44 xor eax,eax ! return 0

45 pop edi

46 pop esi ! restore registers

47 leave ! restore old frame pointer from stack

48 ret ! return address comes from stack

49 .sect .rom ! rom is part of text

50 I_3:

51 .data4 680997 ! format ... "%d\n"

52 I_2: ! format ... "%d %d %d\n"

53 .data4 622879781

54 .data4 1680154724

55 .extern _f

56 .data4 10

13

57 .sect .text

58 _f:

59 push ebp ! save old frame pointer

60 mov ebp,esp ! new frame pointer goes to ebp

61 sub esp,4 ! e = -4(ebp)

62 .sect .bss

63 .comm I_4,4 ! 4 bytes in bss (I_4) for static int d

64 .sect .text

65 mov edx,12(ebp)

66 add edx,8(ebp) ! add parameters (a, b, c)

67 add edx,16(ebp)

68 add edx,(I_4) ! d += a + b + c

69 mov (I_4),edx

70 imul edx,8(ebp) ! edx = d*a

71 mov eax,edx ! return e; note -- no need to save edx to -4(ebp)

72 leave ! restore old frame pointer from stack

73 ret ! return address comes from stack

74 .extern _gbss

75 .sect .bss

76 .comm _gbss,4 ! 4 bytes in bss for global int lbss

77 .sect .text

Additional Instructions

Logical Instructions

Instruction Operands Notes
not reg logical not (one’s complement operation)
and reg, reg

reg, mem logical and
reg, immed

or reg, reg
reg, mem logical or
reg, immed

xor reg, reg
reg, mem logical xor
reg, immed

cmp reg, reg Compare (dest - source)
reg, mem result in EFLAGS sf and zf
reg, immed see control instructions
mem, immed

test reg, reg
reg, mem logical and, EFLAGS set based on result
reg, immed see control instructions

14

0

Logical Shift Right

Arithmetic Shift Right

Rotate Shift Right

A logical shift moves the bits a set number of positions to the right or left. Positions which are not
filled by the shift operation are filled with a zero bit. An arithmetic shift does the same, except the sign
bit is always retained. This variation allows a shift operation to provide a quick mechanism to either
multiply or divide 2’s–complement numbers by 2.

Instruction Operands Notes
sal reg, immed arithmetic shift left
shl reg, immed logical shift left
sar reg, immed arithmetic shift right
shr reg, immed logical shift right
rol reg, immed rotate shift left
ror reg, immed rotate shift right

15

Example: Multiply and Divide by multiple of 2

Control Instructions

The following instructions are used to implement various control constructs (if, while, do while, for).
Conditional branch instructions follow a cmp or test instruction and evaluate the sign and zero flag (SF,
ZF) bit in the EFLAGS register. For each of these instructions, the operand is the name of a label found
in the assembly code.

See the notes below on control flow for examples of how they are used.

Instruction Operands Notes
jmp label unconditional jump
jg label jump if greater than zero
jnle
jge label jump if greater than or equal to zero
jnl
jl label jump if less than zero
jnge
jle label jump if less than or equal to zero
jng
je label jump if zero
jz
jne label jump if not zero
jnz

Iterative Instructions

The above control instructions can be used to implement looping constructs, but there are also some
special instructions just for the purpose of looping.

Instruction Operands Notes
loop label decrement ecx and if ecx is not equal to zero, jump
loope label jump if ZF in EFLAGS is set and ecx is not equal to zero

ecx is decremented
loopne label jump if ZF in EFLAGS is not set and ecx is not equal to zero

ecx is decremented
rep instruction execute the instruction and decrement ecx until ecx is zero.

String Handling Instructions

These instructions are all used to copy data from one string to another. In each case the source location
is the address in esi while destination is the address in edi. After the move, the esi and edi registers are
either incremented and decremented by the appropriate amount depending on the direction flag (DF) in
the EFLAGS register. If DF is 0 (CLD instruction was executed), the registers are incremented. If DF
is 1 (STD instruction was executed), the registers are decremented.

16

Instruction Notes
movs move one byte from [esi] to [edi]
movsb
movsw move one word (2 bytes) from [esi] to [edi]
movsd move one double word (4 bytes) from [esi] to [edi]

Here is a quick example:

lea edi, -20(ebp) ! destination

lea esi, -40(ebp) ! source

mov ecx,10 ! copy 10 bytes

cld ! increment esi and edi

rep movsb ! move 10 bytes, one at a time

Miscellaneous Instructions

Instruction Notes
cld Clear the direction flag; used with string movement instructions
std Set the direction flag; used with string movement instructions
cli Clear or disable interrupts; Reserved for the OS
sti Set or enable interrupts; Reserved for the OS
nop no operation, used to make a memory location addressable

17

Input/Output Instructions

Instruction Operands Notes

in acc,port Read data in and save to eax, ax or al.
The port is the base memory address for
the hardware being read from (eg., a sound
card).

out acc,port Write data in eax, ax or al to an I/O port.
insb
insw Read string data in and save to memory.

The I/O port is taken from the edx register
(eg., a keyboard or serial port). The des-
tination is taken from the edi register. If
used in a loop or with rep, the destination
address is incremented or decremented de-
pending on the direction flag.

outsb
outsw Write string data from memory to I/O

port. The I/O port is taken from the edx
register (eg., a keyboard or serial port).
The source is taken from the esi register.
If used in a loop or with rep, the source
address is incremented or decremented de-
pending on the direction flag.

Control Flow

In assembly language, the instructions used to implement control constructs is the various forms of the
jump instructions. This is usually accomplished with a comparison (cmp) instruction to evaluate a logical
expression following a conditional jump instruction.

if block

if(expr) {

body

}

expr

body

false

18

Note that in the assembly language code, the
jump is made if we will not execute the body;
therefore, the jump statement chosen tests if the
expr evaluates to false.

main()

{

int a, b, c;

if (a <= 17) {

a = a - b;

c++;

}

}

1 PUBLIC _main

2 _TEXT SEGMENT

3 _a$ = -4

4 _b$ = -8

5 _c$ = -12

6 _main PROC NEAR

7

8 ; 3 : {

9

10 push ebp

11 mov ebp, esp

12 sub esp, 12

13 push ebx

14 push esi

15 push edi

16

17 ; 4 : int a, b, c;

18 ; 5 :

19 ; 6 : if (a <= 17) {

20

21 cmp DWORD PTR _a$[ebp], 17

22 jg $L28

23

24 ; 7 : a = a - b;

25

26 xor eax, eax ; 0 -> eax

27 sub eax, DWORD PTR _b$[ebp]

28 neg eax ; b -> eax

29 sub DWORD PTR _a$[ebp], eax

30

31 ; 8 : c++;

32

33 inc DWORD PTR _c$[ebp]

34 $L28:

35 $L24:

36

37 ; 9 : }

38 ; 10 : }

39

40 pop edi

41 pop esi

42 pop ebx

43 leave

44 ret 0

45 _main ENDP

46 _TEXT ENDS

47 END

if else

if(expr) {

body1

} else {

body2

}

19

expr

body1

false

body2

main()

{

int a, b, c;

if (a <= 17) {

a = a - b;

c++;

} else {

b = a;

c = b;

}

}

1 PUBLIC _main

2 _TEXT SEGMENT

3 _a$ = -4

4 _b$ = -8

5 _c$ = -12

6 _main PROC NEAR

7

8 ; 2 : void main(){

9

10 push ebp

11 mov ebp, esp

12 sub esp, 12

13 push ebx

14 push esi

15 push edi

16

17 ; 3 : int a, b, c;

18 ; 4 :

19 ; 5 : if (a <= 17) {

20

21 cmp DWORD PTR _a$[ebp], 17

22 jg $L28

23

24 ; 6 : a = a - b;

25

26 xor eax, eax

27 sub eax, DWORD PTR _b$[ebp]

28 neg eax

29 sub DWORD PTR _a$[ebp], eax

30

31 ; 7 : c++;

32

33 inc DWORD PTR _c$[ebp]

34

35 ; 8 : } else {

36

37 jmp $L29

38 $L28:

39

40 ; 9 : b = a;

41

42 mov eax, DWORD PTR _a$[ebp]

43 mov DWORD PTR _b$[ebp], eax

44

45 ; 10 : c = b;

46

47 mov eax, DWORD PTR _b$[ebp]

48 mov DWORD PTR _c$[ebp], eax

49 $L29:

50 $L24:

51

20

52 ; 11 : }

53 ; 12 : }

54

55 pop edi

56 pop esi

57 pop ebx

58 leave

59 ret 0

60 _main ENDP

61 _TEXT ENDS

62 END

while loop

while(expr) {

body

}

expr

body

false

main()

{

int a, b, c;

while (a <= 17) {

a = a - b;

c++;

}

}

1 PUBLIC _main

2 _TEXT SEGMENT

3 _a$ = -4

4 _b$ = -8

5 _c$ = -12

6 _main PROC NEAR

7

8 ; 2 : {

9

10 push ebp

11 mov ebp, esp

12 sub esp, 12

13 push ebx

14 push esi

15 push edi

16 $L29:

17

18 ; 3 : int a, b, c;

19 ; 4 :

20 ; 5 : while (a <= 17) {

21

22 cmp DWORD PTR _a$[ebp], 17

23 jg $L30

24

25 ; 6 : a = a - b;

26

27 xor eax, eax

28 sub eax, DWORD PTR _b$[ebp]

29 neg eax

30 sub DWORD PTR _a$[ebp], eax

31

32 ; 7 : c++;

33

34 inc DWORD PTR _c$[ebp]

35

36 ; 8 : }

37

38 jmp $L29

39 $L30:

40 $L24:

41

42 ; 9 : }

43

44 pop edi

21

45 pop esi

46 pop ebx

47 leave

48 ret 0

49 _main ENDP

50 _TEXT ENDS

51 END

do loop

do {

body

} while(expr);

body

expr

false

true

main()

{

int a, b, c;

do {

a = a - b;

c++;

} while (a <= 17);

}

1 PUBLIC _main

2 _TEXT SEGMENT

3 _a$ = -4

4 _b$ = -8

5 _c$ = -12

6 _main PROC NEAR

7

8 ; 2 : {

9

10 push ebp

11 mov ebp, esp

12 sub esp, 12

13 push ebx

14 push esi

15 push edi

16 $L28:

17

18 ; 3 : int a, b, c;

19 ; 4 :

20 ; 5 : do {

21 ; 6 : a = a - b;

22

23 xor eax, eax

24 sub eax, DWORD PTR _b$[ebp]

25 neg eax

26 sub DWORD PTR _a$[ebp], eax

27

28 ; 7 : c++;

29

30 inc DWORD PTR _c$[ebp]

31 $L29:

32

33 ; 8 : } while (a <= 17);

34

35 cmp DWORD PTR _a$[ebp], 17

36 jle $L28

37 $L30:

38 $L24:

39

40 ; 9 : }

41

42 pop edi

43 pop esi

44 pop ebx

45 leave

46 ret 0

47 _main ENDP

48 _TEXT ENDS

22

49 END

for loop

for(expr1; expr2; expr3 {

body

}

expr1

expr3

body

expr2
false

main()

{

int a, b, c;

int i;

for (i = 1; i <= 17; i++) {

a = a - b;

c++;

}

}

1 PUBLIC _main

2 _TEXT SEGMENT

3 _a$ = -4

4 _b$ = -8

5 _c$ = -12

6 _i$ = -16

7 _main PROC NEAR

8

9 ; 3 : {

10

11 push ebp

12 mov ebp, esp

13 sub esp, 16

14 push ebx

15 push esi

16 push edi

17

18 ; 4 : int a, b, c;

19 ; 5 : int i;

20 ; 6 :

21 ; 7 : for (i = 1; i <= 17; ++i) {

22

23 mov DWORD PTR _i$[ebp], 1

24 jmp $L29

25 $L30:

26 inc DWORD PTR _i$[ebp]

27 $L29:

28 cmp DWORD PTR _i$[ebp], 17

29 jg $L31

30

31 ; 8 : a = a - b;

32

33 xor eax, eax

34 sub eax, DWORD PTR _b$[ebp]

35 neg eax

36 sub DWORD PTR _a$[ebp], eax

37

38 ; 9 : c++;

39

40 inc DWORD PTR _c$[ebp]

41

42 ; 10 : }

43

44 jmp $L30

45 $L31:

23

46 $L24:

47

48 ; 11 : }

49

50 pop edi

51 pop esi

52 pop ebx

53 leave

54 ret 0

55 _main ENDP

56 _TEXT ENDS

57 END

switch

Switch statements are implemented differently de-
pending on the number of branches (case state-
ments) in the switch structure.

In the following example, the number of
branches is small and the compiler puts the test
variable on the stack at -12[ebp] and uses a sequence
of cmp and jump statements.

main()

{

int i;

int j;

switch(i) {

case 1: j = 1; break;

case 2: j = 2; break;

case 3: j = 3; break;

default: j = 4;

}

}

1 PUBLIC _main

2 _TEXT SEGMENT

3 _i$ = -4

4 _j$ = -8

5 _main PROC NEAR

6

7 ; 2 : {

8

9 push ebp

10 mov ebp, esp

11 sub esp, 12

12 push ebx

13 push esi

14 push edi

15

16 ; 3 : int i;

17 ; 4 : int j;

18 ; 5 :

19 ; 6 : switch(i) {

20

21 mov eax, DWORD PTR _i$[ebp]

22 mov DWORD PTR -12+[ebp], eax

23 jmp $L27

24 $L31:

25

26 ; 7 : case 1: j = 1; break;

27

28 mov DWORD PTR _j$[ebp], 1

29 jmp $L28

30 $L32:

31

32 ; 8 : case 2: j = 2; break;

33

34 mov DWORD PTR _j$[ebp], 2

35 jmp $L28

36 $L33:

37

38 ; 9 : case 3: j = 3; break;

39

40 mov DWORD PTR _j$[ebp], 3

41 jmp $L28

42 $L34:

43

44 ; 10 : default: j = 4;

45

46 mov DWORD PTR _j$[ebp], 4

47

48 ; 11 : }

49

50 jmp $L28

51 $L27:

52 cmp DWORD PTR -12+[ebp], 1

24

53 je $L31

54 cmp DWORD PTR -12+[ebp], 2

55 je $L32

56 cmp DWORD PTR -12+[ebp], 3

57 je $L33

58 jmp $L34

59 $L28:

60 $L24:

61

62 ; 12 : }

63

64 pop edi

65 pop esi

66 pop ebx

67 leave

68 ret 0

69 _main ENDP

70 _TEXT ENDS

71 END

The following example, which has a few more
branches, uses a simple jump table to determine
which branch to take. This code also fills an area of
the stack from -76[ebp] to -13[ebp] with alternating
ones and zeros (0xcccccccc). I do not know why this
is done. It does not appear to accomplish anything.

int main()

{

int i;

int j;

switch(i) {

case 1: j = 1; break;

case 3: j = 3; break;

case 8: j = 8; break;

case 6: j = 6; break;

case 2: j = 2; break;

case 7: j = 7; break;

case 4: j = 4; break;

default: j = 9; break;

}

}

1 PUBLIC _main

2 ; COMDAT _main

3 _TEXT SEGMENT

4 _i$ = -4

5 _j$ = -8

6 _main PROC NEAR

7

8 ; 2 : {

9

10 push ebp

11 mov ebp, esp

12 sub esp, 76

13 push ebx

14 push esi

15 push edi

16 lea edi, DWORD PTR [ebp-76]

17 mov ecx, 19

18 mov eax, -858993460 ; ccccccccH

19 rep stosd

20

21 ; 3 : int i;

22 ; 4 : int j;

23 ; 5 :

24 ; 6 : switch(i) {

25

26 mov eax, DWORD PTR _i$[ebp]

27 mov DWORD PTR -12+[ebp], eax

28 mov ecx, DWORD PTR -12+[ebp]

29 sub ecx, 1

30 mov DWORD PTR -12+[ebp], ecx

31 cmp DWORD PTR -12+[ebp], 7

32 ja SHORT $L44

33 mov edx, DWORD PTR -12+[ebp]

34 jmp DWORD PTR $L49[edx*4]

35 $L37:

36

37 ; 7 : case 1: j = 1; break;

38

39 mov DWORD PTR _j$[ebp], 1

40 jmp SHORT $L34

41 $L38:

42

43 ; 8 : case 3: j = 3; break;

44

25

45 mov DWORD PTR _j$[ebp], 3

46 jmp SHORT $L34

47 $L39:

48

49 ; 9 : case 8: j = 8; break;

50

51 mov DWORD PTR _j$[ebp], 8

52 jmp SHORT $L34

53 $L40:

54

55 ; 10 : case 6: j = 6; break;

56

57 mov DWORD PTR _j$[ebp], 6

58 jmp SHORT $L34

59 $L41:

60

61 ; 11 : case 2: j = 2; break;

62

63 mov DWORD PTR _j$[ebp], 2

64 jmp SHORT $L34

65 $L42:

66

67 ; 12 : case 7: j = 7; break;

68

69 mov DWORD PTR _j$[ebp], 7

70 jmp SHORT $L34

71 $L43:

72

73 ; 13 : case 4: j = 4; break;

74

75 mov DWORD PTR _j$[ebp], 4

76 jmp SHORT $L34

77 $L44:

78

79 ; 14 : default: j = 9; break;

80

81 mov DWORD PTR _j$[ebp], 9

82 $L34:

83

84 ; 16 : }

85

86 pop edi

87 pop esi

88 pop ebx

89 mov esp, ebp

90 pop ebp

91 ret 0

92 $L49:

93 DD $L37 ; case 1

94 DD $L41 ; case 2

95 DD $L38 ; case 3

96 DD $L43 ; case 4

97 DD $L44 ; case 5 - default

98 DD $L40 ; case 6

99 DD $L42 ; case 7

100 DD $L39 ; case 8

101 _main ENDP

102 _TEXT ENDS

103 END

In the next example, the values in the the case
statements are not are not close together, so the
compiler uses a two stage jump table. One table
hold an index into the second table which lists the
location to jump to.

int main()

{

int i;

int j;

switch(i) {

case 10: j = 1; break;

case 33: j = 3; break;

case 85: j = 8; break;

case 66: j = 6; break;

case 20: j = 2; break;

case 79: j = 7; break;

case 41: j = 4; break;

default: j = 9; break;

}

}

1 PUBLIC _main

2 ; COMDAT _main

3 _TEXT SEGMENT

4 _i$ = -4

26

5 _j$ = -8

6 _main PROC NEAR

7

8 ; 2 : {

9

10 push ebp

11 mov ebp, esp

12 sub esp, 76

13 push ebx

14 push esi

15 push edi

16 lea edi, DWORD PTR [ebp-76]

17 mov ecx, 19

18 mov eax, -858993460 ;ccccccccH

19 rep stosd

20

21 ; 3 : int i;

22 ; 4 : int j;

23 ; 5 :

24 ; 6 : switch(i) {

25

26 mov eax, DWORD PTR _i$[ebp]

27 mov DWORD PTR -12+[ebp], eax

28 mov ecx, DWORD PTR -12+[ebp]

29 sub ecx, 10

30 mov DWORD PTR -12+[ebp], ecx

31 cmp DWORD PTR -12+[ebp], 75

32 ja SHORT $L44

33 mov eax, DWORD PTR -12+[ebp]

34 xor edx, edx

35 mov dl, BYTE PTR $L49[eax]

36 jmp DWORD PTR $L50[edx*4]

37 $L37:

38

39 ; 7 : case 10: j = 1; break;

40

41 mov DWORD PTR _j$[ebp], 1

42 jmp SHORT $L34

43 $L38:

44

45 ; 8 : case 33: j = 3; break;

46

47 mov DWORD PTR _j$[ebp], 3

48 jmp SHORT $L34

49 $L39:

50

51 ; 9 : case 85: j = 8; break;

52

53 mov DWORD PTR _j$[ebp], 8

54 jmp SHORT $L34

55 $L40:

56

57 ; 10 : case 66: j = 6; break;

58

59 mov DWORD PTR _j$[ebp], 6

60 jmp SHORT $L34

61 $L41:

62

63 ; 11 : case 20: j = 2; break;

64

65 mov DWORD PTR _j$[ebp], 2

66 jmp SHORT $L34

67 $L42:

68

69 ; 12 : case 79: j = 7; break;

70

71 mov DWORD PTR _j$[ebp], 7

72 jmp SHORT $L34

73 $L43:

74

75 ; 13 : case 41: j = 4; break;

76

77 mov DWORD PTR _j$[ebp], 4

78 jmp SHORT $L34

79 $L44:

80

81 ; 14 : default: j = 9; break;

82

83 mov DWORD PTR _j$[ebp], 9

84 $L34:

85

86 ; 16 : }

87

88 pop edi

89 pop esi

90 pop ebx

91 mov esp, ebp

92 pop ebp

93 ret 0

94 $L50:

27

95 DD $L37 ; entry 0 - case 10

96 DD $L41 ; case 20

97 DD $L38 ; case 33

98 DD $L43 ; case 41

99 DD $L40 ; case 66

100 DD $L42 ; case 79

101 DD $L39 ; case 85

102 DD $L44 ; entry 7, default

103 $L49:

104 DB 0 ; 10

105 DB 7

106 DB 7

107 DB 7

108 DB 7

109 DB 7

110 DB 7

111 DB 7

112 DB 7

113 DB 7

114 DB 1 ; 20

115 DB 7

116 DB 7

117 DB 7

118 DB 7

119 DB 7

120 DB 7

121 DB 7

122 DB 7

123 DB 7

124 DB 7

125 DB 7

126 DB 7

127 DB 2 ; 33

128 DB 7

129 DB 7

130 DB 7

131 DB 7

132 DB 7

133 DB 7

134 DB 7

135 DB 3 ; 41

136 DB 7

137 DB 7

138 DB 7

139 DB 7

140 DB 7

141 DB 7

142 DB 7

143 DB 7

144 DB 7

145 DB 7

146 DB 7

147 DB 7

148 DB 7

149 DB 7

150 DB 7

151 DB 7

152 DB 7

153 DB 7

154 DB 7

155 DB 7

156 DB 7

157 DB 7

158 DB 7

159 DB 7

160 DB 4 ; 66

161 DB 7

162 DB 7

163 DB 7

164 DB 7

165 DB 7

166 DB 7

167 DB 7

168 DB 7

169 DB 7

170 DB 7

171 DB 7

172 DB 7

173 DB 5 ; 79

174 DB 7

175 DB 7

176 DB 7

177 DB 7

178 DB 7

179 DB 6 ; 85

180 _main ENDP

181 _TEXT ENDS

182 END

28

break, continue

void main()

{

int a, b;

int i;

for (i = 1; i <= 17; i++) {

if (a == 0) continue;

if (b == 0) break;

}

while (i <= 17) {

if (a == 0) continue;

if (b == 0) break;

}

do {

if (a == 0) continue;

if (b == 0) break;

} while (i <= 17);

}

1 PUBLIC _main

2 _TEXT SEGMENT

3 _a$ = -4

4 _b$ = -8

5 _i$ = -12

6 _main PROC NEAR

7

8 ; 3 : {

9

10 push ebp

11 mov ebp, esp

12 sub esp, 12

13 push ebx

14 push esi

15 push edi

16

17 ; 4 : int a, b;

18 ; 5 : int i;

19 ; 6 :

20 ; 7 : for (i = 1; i <= 17; i++) {

21

22 mov DWORD PTR _i$[ebp], 1

23 jmp $L28

24 $L29:

25 inc DWORD PTR _i$[ebp]

26 $L28:

27 cmp DWORD PTR _i$[ebp], 17

28 jg $L30

29

30 ; 8 : if (a == 0) continue;

31

32 cmp DWORD PTR _a$[ebp], 0

33 jne $L31

34 jmp $L29

35 $L31:

36

37 ; 9 : if (b == 0) break;

38

39 cmp DWORD PTR _b$[ebp], 0

40 jne $L32

41 jmp $L30

42 $L32:

43

44 ; 10 : }

45

46 jmp $L29

47 $L30:

48 $L34:

49

50 ; 11 :

51 ; 12 : while (i <= 17) {

52

53 cmp DWORD PTR _i$[ebp], 17

54 jg $L35

55

56 ; 13 : if (a == 0) continue;

57

58 cmp DWORD PTR _a$[ebp], 0

59 jne $L36

60 jmp $L34

61 $L36:

62

63 ; 14 : if (b == 0) break;

64

29

65 cmp DWORD PTR _b$[ebp], 0

66 jne $L37

67 jmp $L35

68 $L37:

69

70 ; 15 : }

71

72 jmp $L34

73 $L35:

74 $L38:

75

76 ; 16 :

77 ; 17 : do {

78 ; 18 : if (a == 0) continue;

79

80 cmp DWORD PTR _a$[ebp], 0

81 jne $L41

82 jmp $L39

83 $L41:

84

85 ; 19 : if (b == 0) break;

86

87 cmp DWORD PTR _b$[ebp], 0

88 jne $L42

89 jmp $L40

90 $L42:

91 $L39:

92

93 ; 20 : } while (i <= 17);

94

95 cmp DWORD PTR _i$[ebp], 17

96 jle $L38

97 $L40:

98 $L24:

99

100 ; 21 : }

101

102 pop edi

103 pop esi

104 pop ebx

105 leave

106 ret 0

107 _main ENDP

108 _TEXT ENDS

109 END

Floating Point Arithmetic

The floating point arithmetic unit, called the floating point unit (FPU), contains eight registers which
function as a stack machine. The register which is currently at the top of the stack is referred to as ST.
All floating point instructions specify operands relative to ST.

30

Floating Point Arithmetic Instructions

Instruction Operands Notes
finit initialize the FPU
fld mem Push data onto the FPU stack
fldz Push 0.0 onto the FPU stack
fst mem Store ST (top of stack) to memory
fstp mem Store ST to memory and pop ST
fadd mem Add data to ST and store result in ST
fsub mem Subtract data from ST and store result in ST
fsubr mem Subtract ST from data and store result in ST
fmul mem Multiply data with ST and store result in ST
fdiv mem Divide ST by data and store result in ST
fdivr mem Divide data by ST and store result in ST
frndint Round ST to an integer and store result in ST
fchs Change the sign of ST (ST = -ST)
fcom mem Compare floating point values, setting FPU flags C0–C3
ftst Compare ST to 0.0, setting FPU flags C0–C3
ftsw AX Copy FPU status word to AX

The following example was generated using the Linux gcc compiler1; however, to avoid confusion, I
changed the instruction names and the operand order to be consistent with Intel’s Manual and other x86
C compilers.

include <stdio.h>

int main(void)

{

float pi=3.14159;

float r = 0.25;

printf("%f\n", pi*r*r);

return 0;

}

1 .file "area.c"

2 .version "01.01"

3 gcc2_compiled.:

4 .section .rodata

5 .LC0:

6 .string "%f\n"

7 .text

8 .align 4

9 .globl main

10 .type main,@function

11 main:

12 push %ebp

13 mov %ebp,%esp

14 sub %esp,8

15 mov -4(%ebp),1078530000 ! 0x40490fd0

16 mov -8(%ebp),1048576000 ! 0x3e800000

17 fld -4(%ebp)

18 fmul -8(%ebp)

19 fmul -8(%ebp)

20 sub %esp,8

21 fstp (%esp)

22 push $.LC0

23 call printf

24 add %esp,12

25 xor %eax,%eax

1“gcc -S foo.c” will generate assembly code in foo.s

31

26 jmp .L1

27 .p2align 4,,7

28 .L1:

29 leave

30 ret

31 .Lfe1:

32 .size main,.Lfe1-main

33 .ident

34 "GCC: (GNU) egcs-2.91.66 19990314/Linux"

32

